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INTRODUCTION 
 

Uncertainty analysis of complex simulation models 

plays an important role in nuclear engineering, where 

better understanding of uncertainty leads to greater 

confidence in the models and in the improved safety and 

efficiency of engineering projects.  

It is often the case that approximation of uncertainty-

induced variation in the outputs of a model requires 

extensive sampling. At the same time, running a 

computationally expensive simulation model more than a 

few times is impractical. The contradiction may be 

resolved if a complex model has a simplified, lower-

quality version that runs much faster. Order reduction of 

the model equations based on proper orthogonal 

decomposition is an attractive choice for this 

simplification, due to its applicability to nonlinear 

systems,  straightforward implementation, and availability 

of an a posteriori error estimate [1].  If the reduced model 

is very good, it replaces the full model for all purposes. In 

a more general case, the error can be described by a 

stochastic process with the covariance function fitted to 

the available training data [2].  

The idea of uncertainty analysis on a combination of 

perfect and imperfect data is not completely new [3]. Our 

work is distinguished by its emphasis on model order 

reduction, and also by its relationship with our ongoing 

work on the use of gradient information for uncertainty 

quantification [4,5]. Gradient-enhanced automatic 

learning used in combination with learning on imperfect 

data allows us to construct models of uncertainty in high 

dimension, using very little sampling. 

 

DESCRIPTION OF THE WORK  

 

In our work, we use a combination of three 

techniques: evaluation of a reduced-order model to create 

the imperfect training data, Gaussian-processes based 

learning to correct the imperfection, and multivariate 

polynomial regression on the corrected training data to 

create the surrogate model of uncertainty.  

For model reduction, we use a proper-orthogonal 

decomposition based technique known as the method of 

snapshots [6]. Given a model based on differential-

algebraic equations 0),( =xuf , with the solution 

n
Ru ∈  dependent on the uncertain parameters 

m
Rx ∈ , 

we collect  observations [ ])(),...,(),( 21 NtututuU =  from 

a full model solution trajectory (based on a single instance 

of values of parameters with uncertainty). 

The reduced-order subspace (of dimension nk << ) 

is defined as the dominant eigenspace of the empirical 

correlation matrix, 
T

UUC ⋅= ; the leading eigenvectors 

are recorded as ],...,[ 1 kφφ=Φ . Integration of the 

reduced-order equations 0),(ˆ =xqf  can be much faster 

than that of the full model. 

Consider a scalar model output )(uJ . To create a 

surrogate model of its response uncertainty, we attribute 

variability in an output of interest to a set of stochastic 

parameters (uncertainty quantifiers) [4]. Our surrogate 

model is a deterministic multivariate polynomial 

expansion. Given imperfect training data, the expansion 

acquires an additional stochastic error term )(xY : 
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We can describe )(xY  by a Gaussian process with a 

covariance function of a particular algebraic form, e.g. a 

Matern function: 
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The covariance function is specified by a set of hyper-

parameters mθθθ ,...,, 21 , estimated by maximizing a 

(logarithmic) marginal likelihood function on the training 

set }:)({ XxxYY ∈= : 
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We use the following options: 

(I) Train the covariance function (2) on the explicitly 

known errors: )}.(ˆ())(({)( xuJxuJY I −=  

(II) Train the covariance function on errors inferred from 

any lower-quality approximation of the full model: 



))}(ˆ()({)( xuJxRY II −= , ))(()( xuJxR ≈ . Here, 

)(xR  can be a linear approximation of ))(( xuJ . 

(III)  Train on a weighted combination of training sets 

)()( , III YY .  

The error term is computed by Kriging. For a set of 

uncertainty quantifiers VX ,  
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The variance of the error is expressed as  
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Note that (5) allows us to put confidence intervals on the 

surrogate model of uncertainty. 

 

RESULTS 

 

We tested our method on simplified models of 

Navier-Stokes flow in 2-dimensoinal rectangular channel, 

with uncertainty in the shape of current at the inflow: 
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For an output of interest, we chose a fairly arbitrary 

quantity )/1( 2
vmeanJ = ; where v  was the velocity 

component directed along the channel. Our full model 

would typically have dimension 100-20,000; a reduced 

model would have dimension 20-50. For parameterization 

of the inflow profile with 5-10 independent uncertainty 

quantifiers, we were able to construct adequate models of 

uncertainty using 1-3 full model runs (and 100-200 

reduced model runs). 

In Table 1 we report a few metrics of the observed 

and predicted responses to uncertainty for a flow model 

with uncertainty dimension 7. Covariance function was 

constructed using option (III), with a training set of 2 full 

model evaluations (and 100 reduced model evaluations at 

a total computational cost less than 1% of the full model 

run). 

We stress that even for this relatively simple 

problem, predictions such as above would not be possible 

to obtain by sampling the reduced model outputs. At the 

same time, large-scale sampling of full model outputs 

would require magnitudes more computational effort. 

Considering the popularity and straightforward 

implementation of POD-based model reduction, our 

approach looks very attractive in comparison with other 

intrusive-analysis based techniques. 

 

Table 1. Surrogate model of uncertainty 

Metric Observed on 100 

full model runs 

Predicted  

Mean 10065 9998 

Range 8562 -  

11259 

7900 -  

11259 

St. deviation 1081 1012 

 

In our ongoing work, we are applying our approach 

to the Naiver-Stokes flow modeled by a high-performance 

fluid dynamics solver Nek5000, which has reduced-order 

solver implemented [7], with runtime on the order of 

seconds, as opposed to hours. We obtained our first 

results for the case with a single uncertain parameter 

(Reynolds umber), and are now working to demonstrate 

the performance for higher-dimensional uncertainty. 

Our current goal is to also characterize the class of 

models for which the covariance structure of the model 

can be recovered by (3). 
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